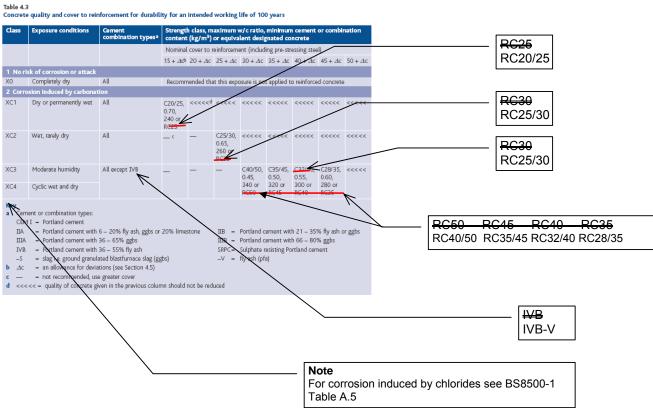
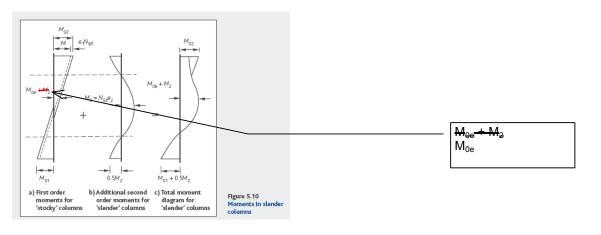

Revisions required to Concise Eurocode 2 (Oct 06 edition) due to revisions in standards, notably Amendment 1 to NA to BS EN 1992-1-1:2004 dated Dec 2009, and interpretations.

Page	Where	Why/old text	Revised text
11	Table 4.2	Revisions to BS 8500-1	See A below
12	Table 4.2 cont	Revisions to BS 8500-1	See B below
13	Table 3	Revisions to BS 8500-1	See C below
13	4.4	New reference	BS 8500-1 A.2.4
14	4.5	NA Amd 1 The minimum cover for concrete cast on prepared ground (including blinding) is 40 mm and that for concrete cast directly against soil is 65 mm.	The nominal cover for concrete cast on prepared ground (including blinding) should be at least 40 mm and that for concrete cast directly against soil should be at least 75 mm.
30	5.6.2.1	Interpretation For columns in braced systems $e_i = l_0/400$ (i.e. $\theta_i = l/200$ for most braced columns). The design eccentricity should be at least ($h/30$) but not less than 20 mm.	For columns in braced systems $e_i = l_0/400$ (i.e. $\theta_i = l/200$ for most braced columns). The design eccentricity should be at least $e_0 = (h/30)$ but not less than 20 mm.
30	5.6.2.1	5.2.7	5.2.7 6.1(4)
31	Figure 5.10	Edit M _{0e} + M ₂	See D below
43	7.3.2	NA Amd 1 V_1 $V_{Rd,max} = b_w z v f_{cd} / (\cot \theta + \tan \theta) \ge V_{Ed}$ with vertical links $= b_w z v f_{cd} (\cot \theta + \cot \alpha) / (1 + \cot^2 \theta) \ge V_{Ed}$ with inclined links	$V_{\text{Rd,max}} = b_{\text{w}} z v_1 f_{\text{cd}} / (\cot \theta + \tan \theta) \ge V_{\text{Ed}}$ with vertical links = $b_{\text{w}} z v_1 f_{\text{cd}} (\cot \theta + \cot \alpha) / (1 + \cot^2 \theta) \ge V_{\text{Ed}}$ with inclined links
43	7.3.2	NA Amd 1 Additional text normally be used v = 0.6 [1 – (<i>f</i> ck/250)] =	normally be used $v_1 = v (1 - 0.5 \cos \alpha)$ where v = 0.6 [1 - (fck/250)] =
43	7.3.2	NA Amd 1 Additional text θ = angle of inclination of the strut, such that cot θ lies between 1.0 and 2.5. The value of cot θ should be obtained by substituting V _{Ed} for V _{Rd,max}	θ = angle of inclination of the strut, such that cot θ lies between 1.0 and 2.5. The value of cot θ should be obtained by substituting V _{Ed} for V _{Rd,max} . For sections under axial tension (not restraint) cot θ should be limited to 1.25

-	1		·
43	7.3.2	NA Amd 1 Additional text For vertical links cot α = 0.	For vertical links $\cot \alpha = 0$ and $\cos \alpha = 0$.
53	8.6	NA Amd 1 Additional text given in Table 7.2.	At the given in Table 7.2. In addition at the first control perimeter v_{Ed} should be limited to $2v_{Rd,c}$
56	9.2	Edit Torsional resistance governed by the area of closed links is given by: $T_{\rm Rd} = A_{\rm sw}/s = T_{\rm Ed}/(2A_{\rm k} \cot \theta) f_{\rm ywd}$	Torsional resistance governed by the area of closed links is given by: $T_{Rd} = 2A_k(f_{ywd}A_{sw}/s)\cot \theta$ Therefore $A_{sw}/s = T_{Ed}/(2A_k \cot \theta f_{ywd})$
72	12.4.3	Interpretation Revise text The intention is to provide an even distribution/density of punching shear reinforcement within the zone where it is required. One simplification to enable rectangular perimeters of shear reinforcement is to use an intensity of A _{sw} /u ₁ around rectangular perimeters.	The intention is to provide A _{sw} on each perimeter.
74	12.5.2 Para 3	NA Amd 1 Additional text The spacing of transverse reinforcement should be the least of	For concrete class \leq C50/60, the spacing of transverse reinforcement should be the least of
77	13.2	Corrigendun No 1 Revised text $F_{\text{tie,per}} = (20 + 4n_0) \text{ kN} \le 60 \text{ kN}$ where $n_0 =$ number of storeys	$F_{\text{tie,per}}$ = (20 + 4 n_0) kN ≥ 60 kN where n_0 = number of storeys
80	14.1	NA Amd 1 Revised text Generally the design tensile strength $f_{\text{ctd},pl} = 0.6 f_{\text{ctk},0.05}/\gamma_c$ (as shown in Table 14.1).	Generally the design tensile strength $f_{ctd,pl} = \frac{0.8}{f_{ctk,0.05}}/\gamma_c$ (as shown in Table 14.1).
80	Table 14.1	NA Amd 1 Revised data. New values of f _{ctd} σ _{c, lim}	See E Below
82		NA Amd 1 Revised data. New values of f _{cvd}	See F Below
93	F3	NA Amd 1 Revision to interpretation of σ_s Delete text. See G below	See G below
94	15.8	NA Amd 1 Revision to interpretation of σ_s for I/d The appropriate SLS stress in reinforcement, σ_s , may be determined as outlined for F3 in Section 15.7.	The appropriate SLS stress in reinforcement, σ _s , may be determined as outlined below + text from F3. See H below
100	References	NA Amd 1 1a National Annex to Eurocode 2- Part 1-1. BSI 2005	1a National Annex to Eurocode 2- Part 1-1. Incorporating Amendment No.1 BSI 2009

103	Table A1	Edit	
		$2^{nd} \gamma_{G}$ under Partial factor on actions	γο
		γ_{F} should read γ_{Q}	

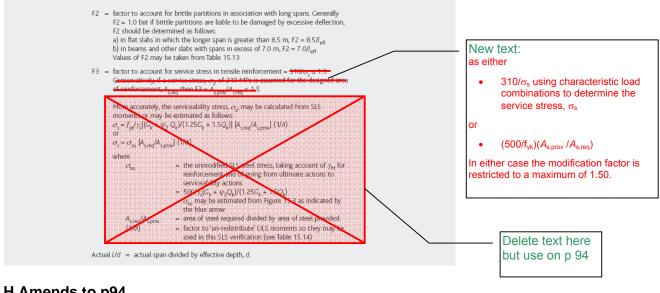

A Amends to p11 Table 4.2


B Amends to p12 Table 4.2 (cont)

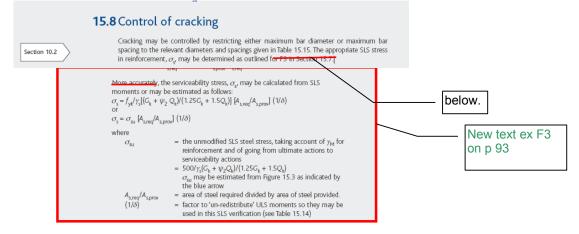
Class	Exposure conditions	Cement combination types ^a		th class, m t (kg/m³)					or combi	nation
			Nomina	l cover to i	reinforcem	ent (includ	ling pre-st	ressing ste	el)	~
			15 + ∆ct	20 + ∆c	25 + ∆c	30 + ⊿c	35 + ∆c	40 + ∆c	45 + Ae	50 + ∆o
4 Corre	sion induced by chloride	es from sea water						\checkmark	_	
XS1	Airborne salts but no direct contact	CEM I, IIA, IIB-S, SRPC	c	-	-	C 50/60, 0.35, 380	C40/50, 0.45, 360	0.50, 340		
		IIB-V, IIIA	—	-	-	G 45/55, 0.35, 380	C35/45, 0.45, 360	0.50, 340	 M	~~~~
		IIIB, I	-	-	-	C35/ 0. 0.40, 1 380	C28/35, 0.50, 40	C25/30, 0.55, 320	~	coq.c
XS2	Wet, rarely dry	CEM I, IIA, IIB-S, SRPC	-	-	-	C40/50, 0.40, 380	C32 40, 0.50, 340	C28/35, 0.55, 320		~~~~
		IIB-V, IIIA	-	-	-	C35/45, 0.40, 380	C28/35, 0.50, 340	C23(30, 0.55, 320	~~~~	<<<<<
		IIIB, T	-	-	-	C32/40, 0.40, 380	C25/30, 0.50, 340	C20/25, 0.55, 320	~~~~	<<<<<
XS3	Tidal, splash and spray zones	CEM I, IIA, IIB-S, SRPC	-	-	-	-	-	-	C45/55, 0.35, 380	C40/50, 040, 380
		IIB-V, IIA	-	-	-	-	-	C35/45, 0.40, 380	C32/40, 0.45, 360	C28/35, 0.50, 340
		IIB, I VB	_	-	-	-	-	C32/40, 0.40	C28/35, 0.45	C25/30, 0.50

C Amends to p13 Table 4.3

D Amend to p31 Figure 5.10


E Amends to p80 Table 14.1

f _{ck}	12	16	20	25	30	35	40	45	50		
f _{cd,pl}	4.8	6.4	8.0	10.0	12.0	14.0	16.0	18.0	20.0		- Revised numbers in red
f _{ctk,0.05}	1.10	1.33	1.55	1.80	2.03	2.25	2.46	2.66	2.85		
f _{ctd}	0.59	0.71	0.83	0.96	1.08	1.20	1.31	1.42	1.52		
$\sigma_{c, \ \text{lim}}$	1.24	1.90	2.60	3.52	4.48	5.46	6.48	7.51	8.56		


F Amends to p81 Table 14.2 for f_{cvd}

	f _{ck}											
$\sigma_{cp}(MPa)$	12	16	20	25	30	35	40	45	50			
0.0	0.59	0.71	0.83	0.96	1.08	1.20	1.31	1.42	1.52			
1.0	0.97	1.10	1.23	1.37	1.50	1.62	1.74	1.85	1.96			
2.0	1.17	1.39	1.53	1.68	1.83	1.96	2.08	2.20	2.31			
3.0	1.16	1.53	1.77	1.95	2.10	2.24	2.38	2.50	2.62			
4.0	0.89	1.50	1.87	2.17	2.34	2.50	2.64	2.77	2.90			
5.0		1.29	1.84	2.27	2.55	2.73	2.88	3.02	3.15			
6.0		0.76	1.66	2.26	2.66	2.92	3.09	3.24	3.38			
7.0			1.27	2.14	2.67	3.04	3.29	3.45	3.60			
8.0				1.89	2.59	3.07	3.41	3.64	3.80			
9.0				1.43	2.41	3.02	3.45	3.77	3.99			
10.0					2.09	2.88	3.42	3.82	4.12			

G Amends to p 93

H Amends to p94

chg 25 Feb 2010