

Specifying Sustainable Concrete to BS 8500

Paul Gregory

Structural Engineer
MSc MBA CEng MICE MIStructE

Guidance for concrete specification including:

- Reduction of ECO₂
- Use of recycled content
- Responsible sourcing
- Material efficiency

www.concretecentre.com/publications

Sustainability

Sustainable development:

'development which meets the needs of the present without compromising the ability of future generations to meet their own needs'

	Social	Economic	Environmental	The Concrete Centre
Fine			,	
Fire	√	√	√	
Acoustics	\checkmark	✓	✓	
Flooding	✓	✓	✓	
Robustness	✓	✓	✓	Concrete Credentials: Sustainability A quick reference quide to the sustainable and performance benefits of concrete
Thermal Mass	✓	✓	✓	structural
Durability	√	✓	✓	performance taken as rea

Thermal mass to reduce OpCO₂

- Concrete has very useful role in energy efficient design strategies or concrete has very useful role in energy efficient design strategies.
- Use of thermal mass and night-time cooling to reduce energy loads necessary for heating and cooling

Whole life CO₂ • Operational CO₂ + Embodied CO₂ (Ratio depends on building type and life span) EU carbon reduction plan: 20% cut in emissions by 2020 compared to 1990 Energy Performance of Buildings Directive (EPBD) By 2020 all new buildings are 'nearly zero-energy' UK - Part L1A (2013) and SAP

Specifying concrete to BS8500

Exposure classification

XC: Corrosion induced by carbonation

XD: Corrosion induced by chlorides

XS: Corrosion induced by chlorides from sea

XF: Freeze-thaw attack

AC: Chemical attack

Exposure classification

XC: Corrosion induced by carbonation

 \Rightarrow

XD: Corrosion induced by chlorides

XS: Corrosion induced by chlorides from sea

XF: Freeze-thaw attack

AC: Chemical attack

Exposure classification

XC: Corrosion induced by carbonation →

XC1: Dry or permanently wet

XD: Corrosion induced by chlorides

XC2: Wet, rarely dry XC3: Moderate humidity XC4: Cyclic wet and dry

XS: Corrosion induced by chlorides from sea

XF: Freeze-thaw attack

AC: Chemical attack

Exposure classification

XC: Corrosion induced by carbonation

XD: Corrosion induced by chlorides

XD1: Moderate humidity XD2: Wet, rarely dry XD3: Cyclic wet and dry

XS: Corrosion induced by chlorides from sea

XF: Freeze-thaw attack

AC: Chemical attack

he Concrete Centre

Exposure classification

XD: Corrosion induced by chlorides

XS: Corrosion induced by chlorides from sea

XF: Freeze-thaw attack

AC: Chemical attack

XS1: Exposed to airborne salt XS2: Permanently submerged XS3: Tidal, splash and spray zones

7

Exposure classification

(mpa The Concrete Centre

XC: Corrosion induced by carbonation

XD: Corrosion induced by chlorides

XS: Corrosion induced by chlorides from sea

XF: Freeze-thaw attack

AC: Chemical attack

XF1: Moderate water saturation (no de-icing agent)

XF2: Moderate water saturation (de-icing agent)

XF3: High water saturation, (no de-icing agent)

XF4: High water saturation (de-icing agent)

Exposure classification

XC: Corrosion induced by carbonation

XD: Corrosion induced by chlorides

XS: Corrosion induced by chlorides from sea

XF: Freeze-thaw attack

AC: Chemical attack

Methods of Specifying Concrete BS 8500-1: 2015

a) Designated concrete

BSI Standards Publication

b) Designed concrete

Concrete – Complementary British Standard to BS EN 206

c) Prescribed concrete

Part 1: Method of specifying and guidance for the specifier

- d) Standardized prescribed concrete
- e) Proprietary concrete

Designated Concretes

Simple and reliable form of specification, widely used. Specified by giving the designated name:

- FND
- GEN
- RC
- PAV

Designated Concretes

Basic specification requirements

- Concrete designation
- Max. aggregate size
- Consistence class

Designated Concretes

Basic specification requirements

- Concrete designation
- Max. aggregate size
- Consistence class

Other?

- Restriction / relaxation of cement type
- Special aggregate requirements

Designated Concrete

BS 8500-2: 2015 (Table 5)

Concrete designation	Min. strength class	Slump class ^{A)}	Max. w/c ratio	comb (kg/n	ı³) for	n conte		Cement and combination types
				≽40	20	14	10	_
GEN0	C6/8	S3	_	120	120	120	120	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V
GEN1	C8/10	S3	_	180	180	180	180	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V
GEN2	C12/15	S3	_	200	200	200	200	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V
GEN3	C16/20	S3	_	220	220	220	220	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V
RC20/25	C20/25	S3	0.70	240	240	260	280	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V
RC25/30	C25/30	S3	0.65	240	260	280	300	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V B
RC28/35	C28/35	S3	0.60	260	280	300	320	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V B
RC30/37	C30/37	S3	0.55	280	300	320	340	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V B
RC32/40	C32/40	S3	0.55	280	300	320	340	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V B
RC35/45	C35/45	S3	0.50	300	320	340	360	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V B
RC40/50	C40/50	S3	0.45	320	340	360	360	CEM I, IIA, IIB-S, IIB-V, IIIA, IVB-V B

Designed Concretes

- Permits flexibility
- Suitable for most applications
- Strength, allowable cement types; water/cement ratios; use of recycled or secondary aggregates are specified

Designed Concrete

Basic Specification Requirements

- Strength class
- Max. W/C ratio
- · Cement type and min. content
- Max. aggregate size
- Consistence class
- Chloride class
- Density class

Designed Concrete

Additional Specification Options

- Aggregate type, including use of recycled aggregate
- Fibres if used
- Air entrainment
- Temperature of the fresh concrete
- Heat development during hydration

Specifying concrete - tips

1. Specify low carbon cements

- Portland cement contributes the majority of ECO₂ to concrete
- Carbon footprint of cement production has reduced by 55% since 1990.
- Use of cement replacements can reduce ECO₂ further eg: GGBS, fly ash

mbodied CO	(mpa The Concrete Centre		
Cement type	Strength class	CO ₂ (kg/T)	
CEM I		153	
CEM IIB-V (30% fly ash)	C32/40	130	
CEM IIIA (50% GGBS)		97	
		40% les	ss CO ₂ than CEM I

Sustainability specification tips for cement in concrete

- 1. Generally <40% GGBS for concrete soffits (unless programme can accommodate)
- 2. Maximise cementitious additions in footings or other locations where striking times are less critical. (e.g. ICF construction)
- 3. Allow some flexibility of % content for contractor to tailor mix to suit site conditions

Specifying Concrete - tips

2. Consider recycled or secondary aggregates

(if available locally or using low carbon transport)

Low carbon natural aggregates

- Inherently low carbon
- Mostly naturally occurring, local resource
- Potential self-sufficiency in UK aggregates for many thousands of years
- Recycled aggregates transported more than 15km by road are likely to have higher ECO₂ content than local primary aggregates

Use of recycled aggregates

- Recycled aggregates (RA) are already efficiently used e.g. as hardcore or in landscaping
- Very little (effectively none) goes into landfill
- Approx. a third of all aggregate in UK is recycled or secondary aggregate (three times more than the European average)
- Consistency of supply and source material are necessary for use in concrete
- Testing regimes for quality control is more rigorous than for natural/primary aggregates

in gabions

to create landscape

Coarse crushed concrete aggregate (CCA) ((mpa

Crushed concrete used as aggregate: a form of RA with maximum 5% masonry content

An in-situ crusher producing CCA (From NF45 The use of recycled materials in residential NHBC Foundation)

- Fewer restrictions on use in concrete than RA
- Up to 20% is permitted to be supplied in 'Designated' reinforced concrete
- 100% coarse CCA possible in:
 - Lower grade concretes (GEN0, GEN1, GEN2, GEN3)
 - Strength classes up to C40/50 in exposure classes X0, XC1, XC2, XC3, XC4, XF1 & DC-1 (but are rarely supplied)

All RA tend to require more cement, change the mix relationships and add an element of risk

Secondary aggregates

Derived from by-products of other quarrying operations of industrial processes

- Recognised secondary aggregates available for concrete include:
 - China clay waste (known as stent aggregate, or granite aggregate and sands)
 - Fly ash (lightweight aggregate)
 - · Air cooled blast-furnace slag aggregate

Sustainable concrete specification tips for aggregates

- 1. Consider recycled or secondary aggregates, depending on:
 - Availability
 - Type of aggregate
 - Use of concrete
 - Local supply or low carbon transportation
 - Don't rule out primary (virgin aggregates)

Specifying Concrete - tips

3. Specify responsible sourced concrete (BES 6001)

- Concrete is the leading construction material for responsible sourcing
- Around 90% all concrete production is BES 6001 accredited

www.concretecentre.com

2015 Publications

www.concretecentre.com

2016 Publications

Concrete is a local material

- Local manufacture and locally sourced raw materials
- Average delivery distance of ready-mixed concrete is less than 12km

Many quarries have on-site rail terminals enabling direct access to the rail network.

Sustainable concrete summary specification tips

When using BS 8500:

- 1. Specify low carbon cements
- Consider recycled or secondary aggregates (if available locally or using low carbon transport)
- 3. Specify responsible sourced concrete (BES 6001)

Thank you

pgregory@concretecentre.com